Selberg zeta functions for cofinite lattices acting on line bundles over complex hyperbolic spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selberg zeta functions for spaces of higher rank

5 Introduction In 1956 A. Selberg introduced the zeta function Z(s) = c N ≥0 (1 − e −(s+N)l(c)), Re(s) >> 0, where the first product is taken over all primitive closed geodesics in a compact Riemannian surface of genus ≥ 2, equipped with the hyperbolic metric, and l(c) denotes the length of the geodesic c. Selberg proved that the product converges if the real part of s is large enough and that ...

متن کامل

The Selberg Trace Formula and Selberg Zeta-Function for Cofinite Kleinian Groups with Finite Dimensional Unitary Representations

For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification po...

متن کامل

Zeta Functions for Hyperbolic Surfaces

Let M = H/Γ a “convex co-compact” hyperbolic surface consisting of a compact core and, possibly, a finite number of infinite volume funnels. We do not allowM to have cusps. (More formally, Γ is convex co-compact if (convex.hull(LΓ))/Γ is compact, where LΓ is the limit set of Γ.) We exclude the possibility that Γ is elementary (i.e. virtually cyclic). The closed geodesics on M are is one-to-one ...

متن کامل

The Selberg Trace Formula and Selberg Zeta-function for Cofinite Kleinian Groups with Finite-dimensional Unitary Representations

For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification po...

متن کامل

Lattices Acting on Right-angled Hyperbolic Buildings

Let X be a right-angled hyperbolic building. We show that the lattices in Aut(X) share many properties with tree lattices. For example, we characterise the set of covolumes of uniform and of nonuniform lattices in Aut(X), and show that the group Aut(X) admits an infinite ascending tower of uniform and of nonuniform lattices. These results are proved by constructing a functor from graphs of grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 2004

ISSN: 0018-2079

DOI: 10.32917/hmj/1150998509