Selberg zeta functions for cofinite lattices acting on line bundles over complex hyperbolic spaces
نویسندگان
چکیده
منابع مشابه
Selberg zeta functions for spaces of higher rank
5 Introduction In 1956 A. Selberg introduced the zeta function Z(s) = c N ≥0 (1 − e −(s+N)l(c)), Re(s) >> 0, where the first product is taken over all primitive closed geodesics in a compact Riemannian surface of genus ≥ 2, equipped with the hyperbolic metric, and l(c) denotes the length of the geodesic c. Selberg proved that the product converges if the real part of s is large enough and that ...
متن کاملThe Selberg Trace Formula and Selberg Zeta-Function for Cofinite Kleinian Groups with Finite Dimensional Unitary Representations
For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification po...
متن کاملZeta Functions for Hyperbolic Surfaces
Let M = H/Γ a “convex co-compact” hyperbolic surface consisting of a compact core and, possibly, a finite number of infinite volume funnels. We do not allowM to have cusps. (More formally, Γ is convex co-compact if (convex.hull(LΓ))/Γ is compact, where LΓ is the limit set of Γ.) We exclude the possibility that Γ is elementary (i.e. virtually cyclic). The closed geodesics on M are is one-to-one ...
متن کاملThe Selberg Trace Formula and Selberg Zeta-function for Cofinite Kleinian Groups with Finite-dimensional Unitary Representations
For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification po...
متن کاملLattices Acting on Right-angled Hyperbolic Buildings
Let X be a right-angled hyperbolic building. We show that the lattices in Aut(X) share many properties with tree lattices. For example, we characterise the set of covolumes of uniform and of nonuniform lattices in Aut(X), and show that the group Aut(X) admits an infinite ascending tower of uniform and of nonuniform lattices. These results are proved by constructing a functor from graphs of grou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 2004
ISSN: 0018-2079
DOI: 10.32917/hmj/1150998509